

DESCRIPTION

BDD

The backdraft damper is a gravity shutter and a pressure relief damper (when provided with counter balance weight) having an adjustable start-open pressure that is capable maintaining a relatively constant pressure, at various air flows and which closes upon a decrease in differential pressure . Pressure relief damper do not immediately open fully upon reaching their start-open pressure.

A pressure relief damper is generally used as a safety or controlling device. In a duct section, it would be mounted on the duct to either relieve an unexpected overpressure or to relive negative pressure downstream. Blade open when the maximum differential pressure is exceeded and close automatically when the pressure drops.

STANDARD CONSTRUCTION

FRAME

Galvanized steel sheet 1.5mm thick, U channel 100 mm depth x 25 mm height (height is able to be increased in case if required).

BLADES

Galvanized steel sheet 1 or 0.8 mm thick, 100 mm width.

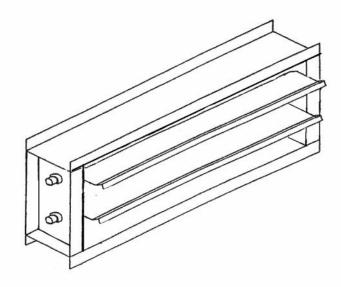
BLADES SHAFT

Galvanized steel 1/2" diameter, with self oiling bronze bushing at the shaft ends.

COUNTER BALANCE WEIGHT

Aluminum plated, fixed to the blades back side (variable as required).

SEALS


Gasket provided at the blades edge if required.

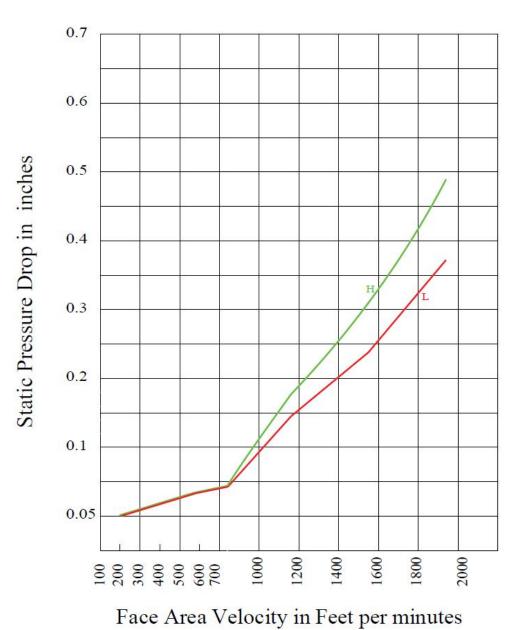
FINISH Mill Galvanized

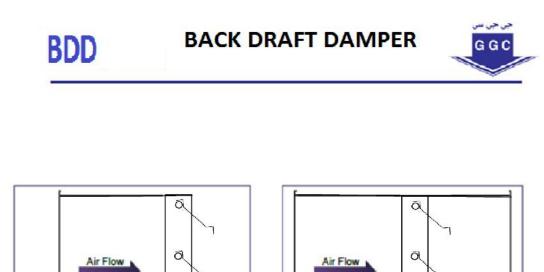
MOUNTING Vertical & Horizontal.

NOTE:

When used in fan discharge application damper should be located at least 1/2 fan diameter from fan discharge.

WHERE:


BDD


H: HIGHE PRESSURE DROP (DUCTED DAMPER EXHAUSTING AIR INTO AN OPEN AREA)(Fig 1-1).L: LOW PRESSURE DROP (FULLY DUCTED DAMPER)(Fig 1-2).

AIR PERFORMANCE

BACK DRAFT DAMPER

GGC

ð,

Fig 1-2

Technical Data and Listed Sizes

Fig 1-1

Ô,

Height	Width							
	200	400	600	800	1000	1200	1400	1600
mm	CFM	CFM	CFM	CFM	CFM	CFM	CFM	CFM
300	494	980	1473	1959	2453	2946	3432	3926
348	574	1139	1714	2279	2853	3427	3992	4567
500	826	1639	2465	3278	4104	4930	5744	6569
652	1078	2139	3217	4278	5356	6433	7495	8572
804	1329	2639	3968	5278	6607	7936	9246	10575
956	1581	3139	4720	6277	7858	9440	10997	12578
1108	1833	3638	5471	7277	9110	10943	12748	14581
1260	2080	4128	6208	8256	10336	12416	14464	16544

Note: Air flow rate data was taken at face area velocity 763 fpm.